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Exact Solutions for Self-Dual SU(2) and SU(3)
Yang—Mills Fields

A. H. Khater? and S. M. Sayed
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The (constrained) canonical reduction of four-dimensional self-dual SU(2) and SU(3)
Yang—Mills theory to two-dimensional nonlinear Sotliriger (NS) and Korteweg—de
Vries (KdV) equations are considered. Thadklund transformations (BTs) are imple-
mented to obtain new classes of exact solutions for the reduced two-dimensional NS
and KdV models.
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1. INTRODUCTION

The self-dual Yang—Mills (SDYM) equations were introduced by Yang and
Mills (1954). The essential idea of Yang and Mills (1954) is to consider an analytic
continuation of the gauge potenti) into a complex space whexg, X2, X3, andx,
are complex. The self-duality equatioRg, = *F,, are then valid also in complex
space, in a region containing real space wherexthare real. Now consider four
new complex variableg, y, z, andz defined by

\/éy:X]_'f‘ng, \/537: X1 — iXp,
(1.1
2z = x5 — iXa, V2Z = X3 +ixa.

The canonical formalism for the SDYM system has been established by Chau
and Yamanaka (1992, 1993). It is simple to check that the self-duality equations
F., = *F,, reduce to

Fyz = O, Fy? = 0,
Fyg+ Fz=0. 1.2)
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Equations (1.2) can be immediately integrated, since they are pure gauge, to give
A,=D'Dy,, A,=D'D,, A;j=D 'Dy, A;=D ‘Dz (1.3

where D and D are arbitrary 2< 2 complex matrix functions oy, y, z, andz
with determinant= 1 (for SU(2) gauge group) and and D are arbitrary 3x 3
complex matrix functions of, y, z, andz with determinant= 1 (for SU(3) gauge
group),Dy = 9, D, etc.

For real gauge field$\ = — A" (the symbol= is used for equations valid
only for real values okj, X2, X3, andx,), we require

D= (D" (1.4)
Gauge transformations are the transformations
D— DU, D— DU, UtU =1 (1.5)

whereU is a2 x 2 complex matrix function of, y, z, andz with determinant 1
(for SU(2) gauge group) arld is a 3x 3 complex matrix function o, y, z, and

z with determinant= 1 (for SU(3) gauge group). Under transformation (1.5),
Eq. (1.4) remains unchanged. We now define the Hermitian matai

J=DD '~ DD". (1.6)

J has the very important property of being invariant under the gauge transformation
equation (1.5). The only nonvanishing field strengths in terms lsécome

For = —D "(3713,)7D, (1.7)
(u, v =y, 2) and the remaining self-duality Eq. (1.2) takes the form:
@)+ @) =0 (1.8)
The action density in terms af is
1
®(J) = ~3 TrFFu = =2 Tr(FygFz + FyzFy)
= -2 Tr{(3713)y(I 13z — (371371 )y (1.9)
where
Fuoo = 0,A — A, —[AL Al (1.10)

Inthis paper, we present a set of exact solutions by applying the BTs (Abolwitz
and Clarkson, 1991; Chan and Zheng, 1989; Rogers and Shodwick, 1982) for
NS and KdV equations in two dimensions. Consequently we find exact solutions
for self-dual SU(2) and SU(3) Yang—Mills equations. The paper is organized as
follows: This introduction is followed by the reduction of self-dual SU(2) Yang—
Mills theory to nonlinear Scludinger (NS) and Korteweg—de Vries (KdV) theories
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in two dimensions, together with the implementation atklund transformations
(BTs) to generate new classes of exact solutions in Section 2. In Section 3 the
reduction of self-dual SU(3) Yang—Mills theory to NS and KdV theories in two
dimensions as well.

2. EXACT SOLUTIONS FOR SELF-DUAL SU(2)
YANG-MILLS EQUATIONS

2.1. Canonical Reduction of Self-Dual SU(2) Yang—Mills Theory to Nonlinear
Schrédinger NS Equation in Two Dimensions and Exact Solutions

It is well-known that a two-dimensional integrable NS equation can be ob-
tained by reduction from (1.2) and (1.3), i.e. the NS equation can be obtained by
putting (Geet al, 1994; Khateet al, 1999a)

1
Ay=als, A= E”l’ Az=Dbl, A;=0, (2.1.1)
wherea andb depend ory andy only, andl; are pauli matrices

i=[1 o) B=7 o) =[s O

with U = U(y, y) and

a = Uy, b= —iUy —2U2U*. (2.1.2)
Substituting (2.1.1) and (2.1.2) into (1.2), we obtain the NS equation
iUy + Uy + 2U2U* = 0. (2.1.3)

Then we find the solution of NS equation by the AKNS (Ablowitz, Kaup, Newell,
and Segur) system as follows (Ablowgt al.,, 1973):

It is known that many nonlinear evolution equations (NEEs) can be derived
from the following AKNS system

where
&1
= , 2.15
¢ |:¢2:| ( )
andP andQ are two 2x 2 null-trace matrices,
_[n a _[A B
P_[r —n] Q_[C —A] (2.1.6)

Heren is a parameter, independentyéndy, andg andr are functions ofy and
y, whereP and Q must satisfy the following integrability condition:

Py—Qy+PQ-QP=0. (2.1.7)
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We obtain various NEEs of physical interest depending on the choices of
A, B, C, andr. Konno and Wadati (1975) introduced the function

1

r=-, 2.1.8
&2 ( )

and, for each of the NEE, derived a BT with the following form:
U =u+ (T, n), (2.1.9)

whereU’ is a new solution.
To construct the NS equation (2.1.3) from the AKNS system (2.1.4), we take
r, A, B, andC in the form

r=-U* gq=U, A=2n?+iUU*
B=2inU +iUy, C=-2nU"+iUg
Substituting from Eq. (2.1.10) into the condition (2.1.7), we get the NS equation
(2.1.3), and derive the new solutibh from the known solutiotJ by using the BT
anr
1+ |12
Now, we shall choose a known solution of the above NS equation (2.1.3).
Next we solve the AKNS system (2.1.4) for and,. Then by Eq. (2.1.8) and the

corresponding BT (2.1.11) we will obtain a new solution of the NS equation (2.1.3).
Let the constant solution of (2.1.3) be

(2.1.10)

U =-U (2.1.11)

Uu=0o. (2.1.12)
From the AKNS system (2.1.4),
do = ¢y dy+ ¢ydy = Po dp, (2.1.13)
where
Pz[’7 0] (n is real),
0 —n
p=Yy+2iny. (2.1.14)
The solution of (2.1.13) is
_ [ expp) 0
¢ = [ 0 exp@p)] ®o. (2.1.15)

Now, we chooseyp = (1, 1)" in (2.1.15) and use (2.1.8), then BT (2.1.11)
gives the new solutions of the NS equation (2.1.3) corresponding to the known
constant NS solutions (2.1.12)

U = —2n exp(452y) sech(2yy). (2.1.16)
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Then we find the constargsandb. Consequently we obtain the gauge poterfial

a = Uy = —4n? exp(4n?y)(sech2y) tanh(27y), (2.1.17)
b = —8n° exp(4n’y)(sech2y) + 16n° exp(4n*(2y — ¥))
x (secl 2ny)(sechay). (2.1.18)
Then we find
—4n? exp(4 n°y)(sech2yy) 0
A x tanh(2yy)
Y 4n? exp(4n®y)(sechay) |’
0 x tanh(2yy)
Ay =0, (2.1.19)
[ o wai
A= |:(1/2)i 0 :| ) (2.1.20)
0 —i[—8n° exp(4 n?y)(sechayy)
+ 167° exp(4n*(2y — )
Ao — x (sech2ny)(sechay)]

i[—8n° exp(4n*y)(sechay)
+161° exp(47%(2y — y))
x (sech2ny)(sechzyy)] 0

(2.1.21)

2.2. Canonical Reduction of Self-Dual SU(2) Yang—Mills Theory
to KdV Equation in Two Dimensions and Exact Solutions

It is well-known that the two-dimensional integrable KdV equation can be
obtained by reduction from (1.2) and (1.3), then the KdV equation can be obtained
by setting (Geet al,, 1994; Khateet al,, 1999a)

Ay=al;, Aj=0, A,=bly, A;= %ill, (2.2.1)
where
a=qy+39%5, b=aq,.
Substituting (2.2.1) into (1.2), we obtain the KdV equation
Oy + Qyyy + 600y = 0 (2.2.2)
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To construct the KdV equation (2.2.2) from the AKNS system (2.1.4), we ake
andQ in the form

o_ [ noq }
-1 —p
_[—4®—2n9—aqy —4nq—29% — 250y — Oy

Q_|: 4n? 4 2q 4n° + 2nq + oy :|

Substituting from (2.2.3) into the condition (2.1.7), we get the KdV equations
(2.2.1), and to derive the new solutighifrom the known solutio by using the BT

q=q-2InTy. (2.2.4)

(2.2.3)

Now we shall choose a known solution of the above KdV equation (2.2.2) as a
simple functiong = q(y, y) and substitute these solutions into the corresponding
matricesP and Q. By direct calculation we take

_ Y-k
3(2y — ko)
as a simple function solution of the KdV equation (2.2.2).

In this case the system (2.1.4)—(2.1.6) cannot be solved for the vg@ctor
as a whole, but can be solved in component foginsnd ¢, separately. From
(2.1.4)—(2.1.6), after inserting the known solutig(y, y) of the KdV equation
into the corresponding matricésand Q, one has the following system of partial
differential equations for the unknowig andg,:

4o [m}: oo [? a [
y

k
q (kl andk; are constantsy; # é) (2.2.5)

®2 —n]Lé2]
and
A B[e¢1]
w=ln] o=l Slle)
Hence
b1y = ng1 + a2, (2.2.6)
$oy =T P1+ N2, (2.2.7)
1y = Ad1 + Bgy, (2.2.8)
and

$2y = Co1 + Aga. (2.2.9)
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These equations are compatible under the conditions of the assumed values
of matricesP and Q connected with the considered NEEs. Sapydrom (2.2.7)

giving
1
o1 = (7 ) 0o+ 1 2210

Substitutingp; into (2.2.9)

C
Poy = (?)(¢2y+ n¢2) — Agz,

and by using Eq. (2.1.7) yields
ry—Cy+2rA—-2nC =0,

I gay = C(doy + n¢2) — r Aga,

then
1
Coy — T2y = (5)(Cy —Iy)p2. (2.2.11)

This is a linear first-order partial differential equation withas its unknown
function; it can be solved by the method of characteristics. Afiehas been
obtained from (2.2.11); substituting it into (2.2.10), one obtgingand thus the
resulting two general solutiors, andg,, which contain an arbitrary functiog.

This arbitrary function can be determined by demanding that the two solutions
¢1 and¢, satisfy either (2.2.6) or (2.2.8), which will yield a second-order linear
ordinary differential equation with the functianas its unknown. If one can solve
for the functiong, we obtain the two particular solutiogg and¢,. Finally, by
applying (2.1.8) and the BT corresponding to the KdV equation we shall obtain
a new solution of the KdV equation. Inserting (2.2.5) into (2.2.11), together with
(2.2.3), gives
» 2y —ki) 1

T T T T sy
Equation (2.2.12) has the following system of ordinary differential equations as
its characteristic equations,

dy _ a2 2(y — ki)
dy 3(2y — ko)’
d¢2 _ 1

dy  3(y—ky)’

(2.2.12)

(2.2.13)

(2.2.14)



416 Khater and Sayed

Solving these two equations gives the general solution of the unkggwnm
Eqg. (2.2.12), which reads

¢2 = (2y — k2)®g(6),
0 = (Y — k) (2y — ko) /3 — 3n?(2y — k)?3, (2.2.15)

whereg is an arbitrary differentiable function. Substituting (2.2.5) and (2.2.15)
into (2.2.10) gives the general solutiongf, which reads

d
$1= —(2y — kz)‘l/Gd—g — n(2y — ka)5g(6). (2.2.16)

To determine the functiog(), substituting (2.2.5), (2.2.15), and (2.2.16)
into (2.2.6), we find thag(9) must satisfy the following Airy equation (Oliver,
1974):

d’g 0
— +=-g=0. 2.2.17
goz T 39 0 ( )

ie.
_1\ /3

g = (AC1 + BiCy) <i9 (?> ) : (2.2.18)

whereA; andB; are two Airy functions,
A1 = Aq(9), (2.2.19)
B; = By(9), (2.2.20)

whereC; andC; are two arbitrary constants. Aftgihas been determined, (2.2.15),
(2.2.16), and (2.1.8) lead to

d
r=—(2y- kz)*l/SE(ln 9 —n (2.2.21)

then substituting thif and (2.2.5) into the BT (2.2.4), we arrive at the new solution
g’ of the KdV equation (2.2.2) corresponding to the known solution (2.2.5):

d2
do?

/ y_kl

= +2(2y — kp) 3

q (Ing), (2.2.22)

where
0 = (Y — ki) 2y — ko) % — 3n?(2y — kp)*>.
Consequently we can calculate the gauge potewtjalfrom Eq. (2.2.22).

Then
a o T o0 2
mv=lo S)ow=o s )
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0 —ib
Azz[ib . } (2.2.23)
where
s 0 () 2 @ o]
— _ 4/3 = — 32 -
3= 202y - ko) 2 a(ng)+ 3| B 1 2y — k)92 no)|
(2.2.24)

_9(v _ 3

_ 2y — ki) +2d_

3y ko |1 28
Loy k)22 9 2 &

< 3@y =k 2 ne) + g n)|.

We note that the self-dual SU(2) Yang—Mills equations hold.

(in g)} 82y k)

3. EXACT SOLUTIONS FOR SELF-DUAL SU(3)
YANG-MILLS EQUATIONS

3.1. Canonical Reduction of Self-Dual SU(3) Yang—Mills Theory
to NS Equation in Two Dimensions and Exact Solutions

It is well-known that two-dimensional integrable sine-Gordon equation can
be obtained by reduction from (1.2) and (1.3); then the NS equation can be obtained
by setting (Khateet al., 1999b)

Ay = (~ai)s,  Ay=0,
1
Az = Z)‘tly AZ: b)"31

wherea andb depend ony andy only, andi, (a=1,..., 8) are the SU(3)
Gell-Mann matrices, with) = U(y, y) and

(3.1.1)

1 0 1 0 0 i 10 -1
m=10 0o o], »=[0 0 o], ai3=|0 0 o],

-1 0 -1 i 00 1 0 -1

0 1 0 000 010
am=(0 0 o), a=[1 0 1], =0 0 0O},

0 -1 0 000 010

00 0 1 0 0
=110 -1], rx=[0 —2 0o},

00 0 0 0 1

a=Uy, b=-iUy—20%U*" (3.1.2)
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Substituting (3.1.1) and (3.1.2) into (1.2), we obtain the NS equation
iUy + Uyy +2U2U* = 0. (3.1.3)
From Eqg. (2.1.16) we obtain the gauge potenfial

0 0 —4nexp(4n?y)
x (sechzyy) tanh(2y)
Ay = 0 0 0 ,
—4n? exp(4n°y) 0 0
x (sechay)tanh(2y)
Ay =0, (3.1.4)
14 0 14
A=| 0 o0 o0 |, (3.1.5)
~1/4 0 —1/4
[ —8n°exp(4n°y)(sechayy) 81° exp(4n°y)(sechay)
+16n°exp(dn*(2y —y)) 0  —16n°exp(4n(2y —y))
x (sech2ny)(sechay) x (secl2ny)(sechay)
As= 0 0 0
—8n3 exp(4n°y)(sechzy) 81° exp(4n°y)(sech2y)
+16p°exp(dn®(2y —y)) 0  —16n°exp(4n*(2y —Y))
x (sect2ny)(sechayy) x (secl2ny)(sechayy)

(3.1.6)

3.2. Canonical Reduction of Self-Dual SU(3) Yang—Mills Theory to KdV
Equation in Two Dimensions and Exact Solutions

It is well-known that the two-dimensional integrable KdV equation can be
obtained by reduction from (1.2) and (1.3), then the KdV equation can be obtained
by setting (Khateet al, 1999b)

Ay =ail;, Ay=0, A,=—(1/4r, Az=Dbas, (3.2.1)
where
a=dy+39% b=aq,.
Substituting (3.2.1) into (1.2), we obtain the KdV equation

Oy + Oyyy + 600y =0 (3.2.2)
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Consequently, we can calculate the gauge potedijalfrom Eq. (2.2.22),
then

0 0 -a b 0 —b
Ay=| 0 0 0|, Aj=0, A;=[0 0 O
—a 0 0 b 0 —b

—(1/4) 0 —(1/4)

A=l o o o |. (3.2.3)
14 0 14
where
. (Y — k1) 4y @2 2
a= 2y~ k) P an9)+3[ A a0y i) 97 (n)|
(3.2.4)
—2(y — ki) 1
= 32y — k)2 |:1+ 2d93(|n g)} —8(2y — ko)~
1
<3y s ng) + 2 s ng)|

We note that the self-dual SU(3) Yang—Mills equations hold.
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